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OptimalActive VibrationAbsorber:
Designand ExperimentalResults

An optimal active vibration absorber can provide guaranteed closed-loop stability
and control for large flexible space structures with collocated sensors�actuators. The

active vibration absorber is a second-order dynamic system which is designed to

suppress any unwanted structural vibration. This can be designed with minimum

knowledge of the controlled system. Two methods for optimizing the active vibration

absorber parameters are illustrated: minimum resonant amplitude and frequency
matched active controllers. The Controls-Structures Interaction Phase-] Evolution-

ary Model at the NASA Langley Research Center is used to demonstrate the effec-

tiveness of the active vibration absorber for vibration suppression. Performance is

compared numerically and experimentally using acceleration feedback.

Introduction

Recently, active vibration absorbers (AVA), or virtual pas-
sive controllers, have received much attention for the vibration

suppression of large flexible space structures. This is largely

due to the AVA controller's ability to guarantee closed-loop
stability with minimum knowledge of the controlled system.

The theoretical development of the AVA controller and actual

implementation are reported by Bruner et al. (1992), Juang

and Phan (1992a), Juang et al. (1991), Morris and Juang (1990),
and Williams et al. (1992).

In this study, two methodologies of optimal tuning of the
AVA controller are studied and compared. The first controller

uses the minimization of the resonant amplitude as shown by

Juang (1984). The second controller uses the frequency match
of the absorber to the controlled system as shown by Bruner

et al. (1992). These methods are then used to design the AVA

controller for the Controls-Structures Interaction (CSI) Phase-
I Evolutionary Model (CEM Phase-I). The simulation and

experimental results of these two methods are compared to see

which method gives better vibration suppression without ac-

tuator saturation. Both numerical and experimental results will

be shown by using sinusoidal and random excitations. Open/

closed-loop modal parameters are identified using the Ob-

server/Kalman Filter Identification (OKID) software described

by Juang et al. (1993). The open/closed-loop damping ratios

are compared.
In the following sections, we start with a short review of the

AVA controller developed by Juang and Phan (1992a). The

two optimal tuning methods for the AVA controller are shown

and discussed in terms of a physical interpretation. Then, a
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brief description of the real time control is presented. Finally,
numerical and experimental results are shown and discussed.

A conclusions section closes the paper.

AVA Controller

The equations of motion for control of large flexible space
structures are typically written as

M£ + D_ + Kx=Bu (1)

y= Hj? + Hjc + Hax (2)

wherexis an n × 1 displacement vector and the mass, stiffness,
and damping matrices satisfy M = M r > 0, K = K r >_ O,

and D = D r >_ O, respectively. In the absence of rigid-body
motion, K = K r > 0. Here B is an n × p influence matrix

which describes the actuator force distributions for the p × 1

control vector u. Equation (2) represents a m × 1 measurement
vector y, and Ha, Hv, and Ha are the m x n acceleration,
velocity, and displacement influence matrices, respectively.

Let the AVA controller take a similar form as Eqs. (1) and
(2), then

Mcx'c + Dcxc + Kcxc = Bcuc (3)

and

yc= HacY:, + Hvjcc + HdcXo (4)

The above equations do not represent any physical system since

it is a fictitious model. Here xc is an ne X 1 controller dis-

placement vector, and Me, De, and Kc can be interpreted as

the controller mass, damping, and stiffness matrices, respec-

tively. These are symmetric and positive definite in general

mechanical systems, so that the controller is asymptotically

stable. The nc x m influence matrix Bc describes the force
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Fig.1 A singledegree-of-freedomplantmodelwitha singledegree-of-
freedomcontroller

distributions for the m × 1 input force vector uc. Equation
(4) represents thep × 1 controller measurement vector yo and
Hac, Hvo and Hac are the p × nc acceleration, velocity, and
displacement influence matrices, respectively. The controller
design parameters are the quantities Mc, Do Kc, Be, Hac, Hoc,
and Hac. Let the flexible space structure and the controller be
interconnected so that the output of the controller is the input
to the structure, and the output of the structure is the input
to the controller, i.e.,

u = y_ = Ha_SCc+ Hw.;cc+ Hacx_ (5)

u_= y = HaJi + Hv J:+ Hdx (6)

Upon substitution of Eqs. (5) and (6) into Eqs. (I) and (3),
respectively, the overall closed-loop system equation becomes

Mt._t + DtJct + gtxt = 0 (7)

where

- B j-/.

I°Dt= Bcnv

gt = - BcHa

-Bm ]
i J'

- BHv_],
D_ ]

K J' x,=

The control equation is modified and the actuators/sensors
locations are adjusted to design a controller that is model-
independent and ensures stability of the closed-loop system
regardless of any perturbations. Only the special case of ac-
celeration feedback is considered in this study, i.e., (Hv, Ha
= 0). By proper selection of nac and Be, the above equation
produces a symmetric closed-loop mass matrix, Mt. To insure
that Mt is positive definite, the input force in Eq. (5) is modified
to include a direct acceleration feedback, i.e.,

u =Yc- Gay = HacJ¢c - GaI"lax (8)

where, Ga is a gain matrix defined as

Ga = HacM_" _B_ (9)

Let sensors and actuators be collocated in this study such that

B = H r and Hac = Brc (10)

and B_ be defined as

Bc=M_ or -B_= M21Bc (11)

then closed-loop mass matrix becomes

[M+HaT-BTM cH,,- Har-B rM ]
M,-- [ - J (12)

which is symmetric and positive definite as long as M and Mc
are positive definite.

In this paper, a single degree-of-freedom with an acceleration
feedback AVA controller is considered as shown in Fig. 1.
Therefore, the controller design is a set of scalar designs which
neglects all other actuators and sensors interactions. For the
collocated sensors/actuators, let B_ = Ha = 1. A state space

form for the single degree-of-freedom system to be controlled
can be written as

x=A.£+By u=C.£+Dy (13)

where

A_[o i] Eo]-k/m -d/m ' B= 1/m '

C=[-k/m d/m], D=[1/m], _7= I;]

These parameters are used for an optimal AVA design for
performance only. If the structural modal parameters are not
known accurately, the AVA closed-loop system design still
guarantees stability but not performance as desired. The con-
troller matrices can be written so that the vector xc represents
the relative position between mc and m. The corresponding
controller equations in a state form are

xc=Ac_c+ BcYc uc=Cc._c+ DcYc (14)

where

A:I0 ']- kclm_ - dclm_ B¢ = ,

[xc1Cc = [- kc - de], Dc = [01, _?c= _?c

In the following sections, two methods for optimizing the
AVA controller parameters for optimal performance are dis-
cussed.

Minimum Resonant Amplitude AVA. The AVA Control-
ler is optimally designed to minimize the vibration amplitude
of the structure. This is achieved by minimizing a quadratic
cost function which is the integral of the squared structure
deflection, i.e.,

f=2J= xrQxdt (15)
0

where Q = Qr >_ O.
The optimal AVA controller parameter in this case are de-

rived by Juang (1984) and presented in dimensionless form as

f= 1/(1 +/Zc) (16)

1 _4 /Zc (17)_c=_ (1+_,o)3

where the mass ratio is defined as/_ = mc/m,fis the frequency
ratio of the controller to the system natural frequency for initial
displacement case, and _'cis the controller damping ratio. The
mass ratio is selected to avoid actuator saturation.

Frequency Matched AVA. The AVA controller frequency
is "matched" to the driving frequency of the actuator for a
desired plant damping ratio, _ap; hence, the unwanted vibration
energy in the system is absorbed. The coefficient terms of the
actual and desired closed-loop characteristic equations are
matched. This is shown in the Appendix. This procedure leads
to a 6th order polynomial for the frequency ratio, f, which is
written as

f6( _ (1 + izc)2)+f5 (4_dp _-p(1 +/zc)) +f4(( 1+/zc)(3 - 4_'a;2)- 4_'p 2)

+f2(4fdp2+4fp2-3-/_c)+f(-4fapfp)+ 1=0 (18)

where _'pis the actual plant damping ratio. The frequency ratio,
f, is then used to calculate the desired controller damping ratio,
_dc, as
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Fig. 2 Flow chart of the real time control logic

pac -(l + _c-4_p2)f4 + 4fp'_apfa- 2f2 + l (19)
4fctpf 2 - 4[pf 3

The optimal fee is defined as when the difference between Pdp

and _'ac is less than 5 percent. The optimal Pdc is achieved by

varying/_c. The actual optimal controller parameters can now

be defined through the optimal desired closed-loop parameters
as

Pc: (_dp + _dc)f -- _pf2 (20)

and

o_c = _pf2 (21)

Here, o_c and _'c are the optimal controller natural frequency

and damping ratio, respectively. The desired plant damping

ratio, Pap, is selected to avoid actuator saturation as well as to
optimize the controller damping.

Real Time Control Logic

The flow chart of the real time control logic is shown in Fig.

2. Here, P1 CEM represents the CEM Phase-1. The CAMAC

(Computer Automated Measurement and Control) system is
used to interface the analog-to-digital and digital-to-analog

conversion. More detailed description about CAMAC is shown

by Belvin et al. (1991). The rest of the diagram represents the

computer software except for the Zonic (ZETA software ref-

erence) which is a commercially available data acquisition and

signal processing system. The experiment begins by reading

the control matrices and test initialization which represents the

Control Law & Test Initialization in Fig. 2. The initialization

sets the test parameters including test time, sample rate, ex-

citation and control times, excitation options, controller size,

scale factors, and options of digital filtering for actuator com-

mands and sensor outputs. Excitation options are sinusoids,

random signals, pulses, user defined excitation, and two sine

sweep options. The sine sweep option requires the specifica-

tions of start and stop times, sampling frequency, and the

number of cycles for each frequency step. On the other hand,

the M sine sweep option only requires the specifications of

start and stop times, and sweep time. Three digital filters are

available for excitation commands (EX Filter), control com-

mands (Cmd Filter), and sensor outputs (Acc Filter) for the

user to select and provide with a filter data file. Upon com-
pletion of a test initialization, the sensor biases for calibration

are calculated by averaging the sensor over 1000 samples, and

then the actual real time test begins by using the data file

parameters. Thruster commands and sensor outputs are
checked per sample for the limit to ensure the controller sta-

bility and system safety. When the test is finished, the actuator

commands and sensor data are stored as a MATLAB binary
file.

Numerical and Experimental Results

The aforementioned AVA Controller design methods are

used to control the first ten modes of the CEM Phase-1. Figure
3 shows a schematic of the model and the location of 8 col-

located sensors/actuators. The finite element model and ex-

perimental mode shapes are used as a guide to determine the

sensor/actuator pair location to control specific modes. The
actuators at locations 1, 2, 4, and 8 are used to control two

independent modes. For this case, two independent optimal

AVA controllers are designed, but in the application, the first
target mode is the primary mode to be controlled.
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Fig. 3 Schematic of the CEM Phase-1 showing collocated sensor and
actuator locations
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Fig. 4 Openlclosed.loop experimental results and FEM simulations of
the minimum resonant amplitude AVA controller at sensor 8 for the
system excited by actuator 8 with sinusoidal input of the frequency at
mode 6

(A) AVA Controller Design. The AVA controller designs

are demonstrated by first exciting the CEM Phase-1. A sin-
usoidal excitation is used to excite individual modes of the

model to estimate individual modal parameters for the AVA

designs with optimal performance. This is then used to design

both a minimum resonant amplitude and a frequency matched

AVA controllers. Both controller parameters are selected to

avoid actuator saturation. The AVA controller design param-

Sensor/Actuator
location

Minimum resonant amplitude AVA controller design parame-

2"a Target Modei et Target Mode
m_ d_ k_ m, d_ k_

2.000 0.743 0.524 0.055 0.120 13.687
0.300 0.470 4.164 0.200 0.290 3.253
0.057 0.123 14.201
0.670 1.005 9.830 0.450 0.612 7.670
2.200 0.804 1.300
0.320 0.462 28.579
1.500 0.545 0.898
0.100 0.157 2.708 0.045 0.075 3.949

Table 2

Sensor/Actuator 1"t Target Mode
location mc dc kc mc dc k_

1 2.000 1.473 0.472 0.100 0.591 24.074
2 0.310 0.991 4.220 0.330 1.103 4.530
3 0.Ii0 0.659 ;26.428 -

4 0.700 2.144 10.086 0.700 2.191 10.576
5 2.400 1,840 1.311 - -
6 0.600 2.346 51.368 -
7 1.700 1.307 0.925 -
8 0.150 0.544 3.705 0.090 0.411 7.406

Frequency matched AVA controller design parameters

2"a Target Mode

eters under the above conditions are shown in Tables 1 and 2.

For the open-loop case, the structure is excited by using a

sinusoidal excitation at the individual frequencies of interest

for the duration of each test. For the closed-loop case, the
structure is excited with open-loop conditions for the first 10

or 15 seconds then the AVA controller is activated. Mode 6

is used as an example. Figures 4 and 5 show the results of the

minimum resonant amplitude and the frequency matched AVA

controllers for mode 6, respectively. The dotted and solid lines

represent the open and closed-loop conditions, respectively.
Both FEM simulation and the experimental results show a

similar trend of time histories for mode 6 in these figures. The
effectiveness of both AVA controllers are clearly demonstrated

in these figures. The frequency matched AVA controller is

somewhat faster in suppressing vibration than the minimum

resonant amplitude AVA controller. For clarity, closed-loop
impulse response simulations are used to compare the AVA

controllers which is shown in Fig. 6. These results also indicate

that the frequency matched AYA controller is somewhat more

effective in vibration suppression.

(B) Effectiveness of AVA Controller. The effectiveness
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Fig. 5 Open/closed.loop experimental results and FEM simulations of

the frequency matched AVA controller at sensor 8 for the system excited
by actuator 8 with sinusoidal input of the frequency at mode 6

10.0

5.0

Accel.

0.0

(m/_ec 8)

-6.0 .... rain. amplitude AVA
freq. ma_ched AVA

- 10.0

0.0 10.0 20.0 _ 30.0

Time (sec)

Fig. 6 Open/closed.loop impulse response simulations at sensor 8 for

the system excited by actuator 8 with sinusoidal input of the frequency
at mode 7

of the minimum resonant amplitude and frequency matched
AVA controllers are also demonstrated under random exci-

tations, which controls 24 states with 8 inputs and 8 outputs

with a 200 Hz sampling rate. The white, zero-mean and Gaus-

sian random signal, with 5 Hz cut-off frequency, is used to

excite the structure. Sensor 8, shown in Fig. 7, is used as a

typical example of the open/closed-loop experimental results

under random input. The peak response of the AVA controllers
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Fig. 7 Open/closed.loop experimental results of the frequency matched

AVA controller at sensor 8 under random input at all 8 actuators
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Fig. 8 Open/closed-loop power spectral densities of the experimental
results and FEM simulations for the minimum resonant amplitude AVA

controller at sensor 8 under random excitation at all 8 actuators

is approximately 50 percent less than the open-loop response

for both experimental results and FEM simulations. The power

spectral densities (PSD) plots of the signals from Sensor 8 are
shown in Fig. 8 for the minimum resonant amplitude AVA

controller. Figure 9 shows the PSD plots for the frequency

matched AVA controller. These PSD show the vibration energy

reduction of the controlled modes. The purpose of these plots,
which are not Bode plots, is to better illustrate the difference

in the amplitude of the spectral densities between the open and
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Open/closed.loop power spectral densities of the experimental

results for the frequency matched AVA controller at sensor 8 under
random excitation at all 8 actuators

closed-loop systems. The power spectral density of the fre-

quency matched AVA controller for sensor 8, plotted on a

linear scale, is shown in Fig. 10 to demonstrate the effectiveness

of the AVA controller in reducing the vibrations of modes 6

and 7 with frequencies of .911 Hz and 1.54 Hz, respectively.

Figure 10 definitely shows that modes 6 and 7 are suppressed

by the AVA controller. In general, the FEM simulation results

Table 3 Comparison of open/closed loop damping

Damping (%)
Sinusoidal Excitation Random Excitation

Frequency OKID OKID OKID

(Hz) Open-loop Closed-loop Open-loop! Closed-loop Closed-loop

Min. Amp. Freq. Matched

.158 3.8 32.0 -

.172 7.0 60.0

.720 .90 22.0 1.15 31.12 58.18

.737 .97 24.0 1.69 27.29 21.98

.911 .42 20.0 ,64 5.58 10.75

1.54 .45 11.0 1.04 10,01 12.08

2.56 .50 10.0 1.03 9.29 11,0

are in good agreement with the experimental results for both

controllers. These figures also indicate that the frequency
matched AVA controller is somewhat more effective in vibra-

tion suppression than the minimum resonant amplitude AVA
controller.

C. System Identification using OKID. Open/closed-loop

modal parameters from experimental data are identified using
the OKID. Table 3 shows the comparison of the open/closed-
loop damping ratios for the sinusoidal and random excitations.

The closed-loop damping ratios for the sinusoidal excitation

represent the specified damping ratio for both AVA control-
lers. Even under the random excitation, the OKID closed-loop

damping ratios are in reasonable agreement with the specified
damping ratios. The OKID did not have a long enough ex-
perimental record to identify the lower frequencies. This table
also shows that the damping ratios increased significantly from
the open-loop to the closed-loop system, which is a primary

factor for the vibration suppression.

Conclusions

Two methods, the minimum resonant amplitude and the
frequency matched, for tuning the active vibration absorber
(AVA) parameters are demonstrated and evaluated. The ef-

fectiveness of these AVA controllers are tested using the Con-
trols Structures Interaction Phase-1 Evolutionary Model.

Experimental and simulation results show both AVA con-
trollers being very effective in suppressing the vibrations. The

frequency matched AVA controller suppresses the vibration
somewhat faster than the minimum resonant amplitude AVA
controller. The frequency matched AVA controller produces
more realistic actuator commands without actuator saturation.

The experimental results demonstrate the robustness of the

AVA controller designs by being able to control 24 states under
random excitations.
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APPENDIX

Derivation of the frequency matched AVA controller pa-
rameters are shown in this Appendix. The equation of motion
for the system shown in Fig. 1 is

rr_ + dx + kx- dckc- kcxc = 0 (A. 1)

mcXc + dcxc + k_xc + m_2 = 0 (A.2)

where Xc = xa - x. The closed-loop characteristic equation
of this system becomes

s4+S3_m -_ m/ \m_rn m_ m m/

\mcm mcm] mcm

The frequency matched desired plant and controller charac-
teristic equation is written as

(s2 + 2_apws + o:2) (s2 + 2_aco:s+ ¢o2)=O (A.4)

and its expanded form is

s 4+ s3(2_a¢w + 2_epo:) + S2(2_2 + 4_dp _dc 602)

+ S(2_dpO:3 + 2_dc¢03) + ¢04=O (A.5)

Now, the coefficient terms are matched to define the controller
parameters. The so term is

k_ o_4

m_- _p2 (A.6)

where OJp2 = k/m. The s _ term is

m_ o_p\

where d/m = 2_pO:,. The s2 term is

_.dc_(1 +tzc--4_p2)f4+4_e_apf3-2f2+ 1 (A.8)
4_apf 2 - 4_pf 3

where tzc = rnc/m and f = o:/O_p.The s3 term is

f6( -- (1 + p,c) 2) +fS(4_dp_p(1 + I,tc)) +f4((1 + tz_)(3- 4_'ap2) - 4_'p2)

+ fz(4_apz + 4_'p2- 3 - IZc)+ f( - 4_dp_p)+ 1= 0 (A.9)
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